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Goals to Improve the Science and the Methodology
Better understanding of LPRE combustion instability and turbulent 
combustion dynamics.
Identify methods for improved performance and stable operation.
Use deliberate triggering to change the resonant mode to a less 
energetic and less consequential mode. 
Better closure models for sub-grid physics and lower computational 
costs (e.g., flamelet model) for large-eddy simulations (LES). 
Examine combustor flow using real fluid equations of state
----------------
Increase ability to analyze multi-injector engines.
Greater accuracy and lower computational cost at various levels of 
fidelity.
Optimize design of deep learning neural networks (DLNN) to bypass 
look-up tables for the flamelet sub-grid model in LES. 

Multi-output  DLNN – more 
layers,  more efficient.

Multi-injector  rocket 
combustors–
turbulent combustion 
dynamics, nonlinear 
acoustic oscillations 
with unstable limit 
cycles, unsteady 
flamelets, chaotic 
behavior.



High-Pressure Combustion Dynamics  
Configurations for Study

Multi-branched flames 
appear in rocket 
combustor 
computation. 
New flamelet
theory is 
needed.

Single-coaxial-injector rocket engine
Purdue University  CVRC   experiment
Various lengths, mixture ratios, wall 

Temperatures.  LES/ RANS hybrid, use of 
flamelet theory for  sub-grid.
Triggering and spontaneous longitudinal mode. 

DLNN Optimization
Numbers of  deep layers,  neurons, variables /NN

82-Coaxial-Injector LPRE
This mimics the Rocketdyne
Jensen et al. experiment. We 
examine longitudinal and tangential 
modes. We show how a change 
in burning rate affects the preferred 
instability mode.
Snapshot: Methane mass fraction 
2 cm downstream of injector plate.

Ten- and Nineteen-Coaxial-Injectors 
LPRE
Various diameters, longitudinal and 
tangential modes,  triggering and 
spontaneous instability, triggering for 
mode change, scaling laws, effect of 
helicity. Add  and compare flamelet
model.

Thirty-Injector LPRE mimicking 
Rocketdyne Jensen et al. 82-injector 
LPRE experiment
Various lengths, longitudinal and 
tangential modes, chaotic combustion 
dynamics, triggering  and spontaneous 
instability, triggering for mode change, 
triggering for control, premixed flames  
vs. nonpremixed flames.



Flamelet Theory and LES Sub-grid Modelling

Mixture fraction Z (mean and variance),  progress variable C 
are inputs to flamelet model together with pressure.  Seven 
outputs, including flame temperature and ὡC ,  the sum of 
reaction rates for selected species, i.e., FPV reaction rate.

Added equations for LES

Flamelet Progress Variable Theory
The FPV approach is built around a 
single diffusion flame in a strained 
counterflow.  Scalar dissipation rate 
increases with strain rate and 
residence time shortens compared 
to chemical time.  Peak temperature 
drops. The progress variable  C is a 
convenient but contrived quantity.

Advantages of FPV Approach
Reduces number of dependent scalars.
Eliminates short  chemical-kinetic  time scales and 
high computational cost.
Adds sub-grid mixing physics.

Disadvantages of FPV Approach
Does not account for multiple flames.
Ignores imposed shear strain or vorticity.    
Does not address 3D  flamelets.
No scaling between resolved flow and sub-grid.
Constant-density scalar dissipation rate.

Our strategy is to use the best available flamelet theory to
represent well the detailed chemistry and molecular mixing 
but avoid the short time scales  forcing excessive computational 
costs. First, we used a look-up table approach. Now, we 
have moved to the use of deep learning neural networks (NN).
Simutaneously, we seek to improve the flamelet model.



Neural Network Representation of Flamelet Model  for Rocket Engine Combustion

NN replaces look-up table for the Progress-variable 
Flamelet (PVF) Theory requiring less memory.

Training of the NN can require as little as 15% of 
the table data.  Learning from the data most used by 
the CFD and data derived from physical constraints, 
i.e., “physics awareness”

The NN is used successfully for the triggered 
instability case without special training.

# of neurons in each layer FLOP training error (%) test on table (%)

�𝑇𝑇𝑓𝑓 4-15-10-15-1 375 0.59 4.83

𝑒̃𝑒𝑓𝑓 5-15-10-15-1 390 0.0566 0.57

�𝑅𝑅 5-15-10-15-1 390 0.0526 0.65

𝜆̃𝜆 5-15-10-15-1 390 0.21 3.57

�𝛾𝛾 5-15-10-15-1 390 0.0371 0.48

�𝛼𝛼𝛾𝛾 5-15-10-15-1 390 0.22 1.41

�̇𝜔𝜔𝐶𝐶 4-15-20-25-35-25-20-15-5-1 3490 1.49 32.86

New approach: one NN for each FPV output. Six  learn
from table data used by transient-case CFD. FPV reaction 
rate learns also from dynamic equilibrium data.

Original Approach: two sets of NNs learning 
off-line from table data.     

Focus has been on single-injector CVRC Engine with axisymmetric LES 
and  unsteadiness due to  both combustion instability and turbulence: it 
emulates well experimental evidence.



GUIDING CONCEPTS IN NEURAL NETWORK DESIGN
NN structure design is aimed at increasing accuracy while decreasing the data 
retrieval computational cost. A     NN with the lowest number of neurons and 
layers that results in sufficiently small error is desired for each variable. 

Physics-informed enhancements of the training set improve results. 
1) the use of flame temperature as an extra input for all variables except PVRR;    
2) the addition of  specific boundary points to the training set ;  and                       
3) the addition of points with C=0 based on empirical considerations. 

NN weights are randomly initialized with the Xavier algorithm and are updated 
via the ADAM algorithm within the back-propagation procedure. Mini-batch 
training, as it is helpful to avoid local-minima in the training process, and 
regularization to avoid overfitting and improve NN performance on the test sets 
have been also used. 

Accordingly, we significantly improved the accuracy of the output variables



Comparison of Results: CFD with Lookup Table vs. CFD with NN
Training of Progress-variable 
reaction rate is greatest challenge

Pressure in oxidizer post                  Pressure in chamber    
r=0.5 cm,  x = -10 cm shear layer=1.13 cm, x = 8 cm

Transient for 
spontaneous 
instability

Dynamic 
equilibrium 
for 
spontaneous 
instability

Triggered 
instability

Lookup Table-Rayleigh Index

NN-Rayleigh Index



A new flamelet table is created for multi-injector methane-O2, high pressure engines

Prof. Hai Wang, Stanford    CHO system
12 SPECIES: H2  H  O2  O  OH  HO2  
H2O  CH3  CH4  CO  CO2  CH2O    
39 REACTIONS 
Pressure range: 160 -220 bar
Lower flame temperatures and lower burning 
rates compared to one-step kinetics applied 
to resolved scale.

Results for 10-injector 
engine with flamelet
progress variable.



3D LES for 10-coaxial-injector methane-O2 Engine: One-step kinetics vs. Flamelet

Resolution of 
full chamber, 
transonic nozzle, 
and 10  injector ports

Flamelet One-step kinetics

Flamelet has lower burning rate at same pressure levels as shown 
by magnitudes of reactant mass fractions. The flamelet model accounts 
for sub-grid molecular mixing.

The slower burning flamelet favors the 2500 cps tangential mode 
over the 1500 cps longitudinal mode; vice-versa for the faster burning  
one-step kinetics model. 

The flamelet model moves much of the combustion away from the 
pressure antinode  of the longitudinal mode, thereby making the 
tangential mode relatively stronger.



Injector Ports – Quarterwave Oscillations
For 10-injector engine, better resolution  for injector ports compared to 19-, 30-, and 82-injector  analysis.

z = 0 at injector-plate face ( injector exit, open end); z = - 0.05 m is injector-port inlet (closed end).

Oscillatory behavior in the central port using the progress-variable flamelet model. 
Similar oscillatory behavior occurs with the one-step kinetics model.  Similar resonance in each injectors. 
However, the oscillation magnitude reaches a maximum value in the central injector .

Quarterwave character: Pressure antinode (velocity node) at port entrance; a pressure node (velocity antinode) 
occurs at port exit. Phase angle difference between pressure and the axial velocity is about 90 degrees. 

The theoretical frequency of this 
quarter-wave-length resonance is 1895 Hz. 

The actual resonance frequency is 1500 Hz.

The 1500 cps is expected since it is driven 
by the longitudinal-mode oscillation in the
combustion chamber.



Comparison of Jensen et al. Rocketdyne
Experimental Engine to our CFD Simulation

Even with 16.5 million nodal points in the mesh, the internal 
details of the  injector port are not well resolved

Design sketches for the experimental engine



Simulation of 82-injector Rocketdyne LPRE

The 82-injector engine follows the design of the Rocketdyne experimental engine, 
except for details internal to the injector ports.
The 30-injector case matches the 82-injector case in chamber and nozzle sizes;
mixture ratio; injector exit velocities; total mass flux; mean chamber pressure; total 
port exit area.
The radial and azimuthal distributions of injected mass flux are matched carefully.
Some details of the internal injector port design is not perfectly mimicked.  
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Stability Behavior of 30-injector LPRE vs. 82-injector LPRE
A decrease in mixing rate or chemical rate favors tangential mode by 

moving combustion away from longitudinal pressure antinode
Spectral Analysis near Injector Plate               Methane Mass Fraction near Injector Plate

30-injector –full reaction rate      82-injector full rate

82-injector –half reaction rate   and quarter rate82-injector –half rate,  0.375  reaction rate, and 0.25 rate

30-injector –full reaction rate      82-injector full rate
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Flamelet Theory and LES Sub-grid Modelling – More Improvements
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Goals: 
Account for multiple flames.  Well handled.
Variable-density formulation. Well handled.
Consider imposed shear strain or vorticity.   Done, more to come.
Allow 3D  flamelets. Done, more to come.
Properly scale between resolved flow and sub-grid. Underway.

--- Consider a  mixing layer with a fuel-rich mixture and a fuel-lean mixture 
flowing  in parallel. A normal strain is imposed via transverse counterflow.
--- K is a normalized Damkohler number which increases with pressure and 
decreases with increasing imposed normal strain.
---Three flames result: a central non-premixed flame and two premixed 
flames. The premixed flames can be heat-diffusion controlled by the 
nonpremixed flame.

Heated wall, inflowing 
combustible premixture.
Enthalpy vs. similarity variable.
Two lower very-fuel-lean cases 
require wall heating while
the top two modestly fuel-lean 
cases survive independently 
of wall heating
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Low-Cost Computation and Stochastic Analysis 
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High-Pressure Combustion Dynamics    
Opportunities

• Introduction of flamelet table for all multi-injector LPRE
• Pursue further triggering for control
• CFD with real-gas equations of state
• Further optimization of use and design of DLNN for multi-injector LPRE
• Better resolution of injector port oscillations for multi-injector LPRE
• Continued examination of  chaotic combustion dynamics
• Further examination of consequence of premixed vs. nonpremixed combustion
• Further improvements of flamelet model

Thanks to AFOSR and Dr. Mitat Birkan for the support.

Thanks to the research team:  Professors A. Sideris, F. Liu;
Drs. T. Nguyen, J. Xiong, A. Jorda Juanos, and L. Zhan;
Graduate Student  Researchers  Z. Shadram and C. Lopez-Camara





Neural Network Representation of Flamelet Model  for Rocket Engine Combustion

NN replaces look-up table for the Progress-variable 
Flamelet (PVF) Theory requiring less memory.

Training of the NN can require as little as 15% of 
the table data.  Learning from the data most used by 
the CFD and data derived from physical constraints, 
i.e., “physics awareness”

The NN is used successfully for the triggered 
instability case without special training.

14-cm
oxidizer-
post cases

Model
Relative Error (%) Correlation (%) RMS Ratio (%)

mean std mean std mean std

Dynamic
equilibrium

NNa 7.18 2.47 78.50 12.69 93.71 4.58
NNb 6.23 2.34 82.10 13.71 93.91 2.85

Transient
NNa 5.02 1.32 18.74 18.74 75.84 2.35
NNb 5.02 1.40 79.61 14.89 103.63 2.89

# of neurons in each layer FLOP training error
(%)

test on table
(%)

�𝑇𝑇𝑓𝑓 4-15-10-15-1 375 0.59 4.83
𝑒̃𝑒𝑓𝑓 5-15-10-15-1 390 0.0566 0.57
�𝑅𝑅 5-15-10-15-1 390 0.0526 0.65
𝜆̃𝜆 5-15-10-15-1 390 0.21 3.57
�𝛾𝛾 5-15-10-15-1 390 0.0371 0.48
�𝛼𝛼𝛾𝛾 5-15-10-15-1 390 0.22 1.41
�̇𝜔𝜔𝐶𝐶 4-15-20-25-35-25-20-15-5-1 3490 1.49 32.86

New approach: one NN for each FPV output. Six  learn
from table data used by transient-case CFD. FPV reaction 
rate learns also from dynamic equilibrium data.

Original Approach: two sets of NNs learning 
off-line from table data.     

Focus has been on single-injector CVRC Engine with axisymmetric LES 
and  unsteadiness due to  both combustion instability and turbulence: it 
emulates well experimental evidence.
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